首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6403篇
  免费   1739篇
  国内免费   851篇
  2024年   12篇
  2023年   420篇
  2022年   157篇
  2021年   320篇
  2020年   636篇
  2019年   648篇
  2018年   578篇
  2017年   568篇
  2016年   506篇
  2015年   537篇
  2014年   504篇
  2013年   546篇
  2012年   430篇
  2011年   383篇
  2010年   342篇
  2009年   369篇
  2008年   328篇
  2007年   251篇
  2006年   196篇
  2005年   192篇
  2004年   168篇
  2003年   122篇
  2002年   126篇
  2001年   102篇
  2000年   118篇
  1999年   73篇
  1998年   59篇
  1997年   52篇
  1996年   39篇
  1995年   40篇
  1994年   30篇
  1993年   31篇
  1992年   14篇
  1991年   18篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   10篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1971年   1篇
  1958年   4篇
排序方式: 共有8993条查询结果,搜索用时 537 毫秒
81.
青藏高原物种丰富且属于气候变化敏感区,研究气候变化对青藏高原物种的潜在分布影响,对于该区域物种多样性保护具有重要意义。该研究以一级濒危藏药植物全缘叶绿绒蒿为研究对象,利用加权平均算法(weighted average algorithm, WAA)构建随机森林(RF)、灵活判别分析(FDA)及人工神经网络(ANN)的集成模型,同时对比分析了WAA模型和不同生态位模型的预测精度。最后利用WAA模型预测了全缘叶绿绒蒿在当前(1970~2000年平均)和未来(2041~2060年平均)气候情景下的潜在分布,其中未来气候考虑了2种“共享社会经济路径”(SSP2-45和SSP5-85)。结果显示:(1) WAA模型的预测表明,基于RF、FDA和ANN的集成模型的AUC值为0.926,在AUC值最高RF模型的基础上提高了3%,在FDA和ANN模型的AUC值的基础上均提高了5%。(2) WAA模型确定,全缘叶绿绒蒿的潜在分布对年降水量和最暖季降水量最为敏感,其次是最热月份最高气温,同时对最湿月份降水量以及等温性表现出较低的敏感性。(3)当前全缘叶绿绒蒿潜在分布区主要分布在甘肃西南部、青海东部至南部、四川西部和西北部、云南西北部和东北部、西藏东部。(4)未来气候变化下青藏高原全缘叶绿绒蒿潜在分布预测表明,在2050年SSP2-45情景下,全缘叶绿绒蒿的潜在分布区大小与当前潜在分布区大小基本相同,但整体向西北方向高海拔高纬度地区迁移;在SSP5-85情景下,全缘叶绿绒蒿的潜在分布区明显收缩,且向西北高纬度高海拔地区延伸的趋势更加明显。  相似文献   
82.
The grapevine trunk diseases Eutypa and Botryosphaeria dieback, caused by fungal species that infect pruning wounds, are a threat to vineyard longevity worldwide. This study evaluated the susceptibility of grapevine pruning wounds in three climatic regions of Australia. In field trials, wounds were made early, mid- and late winter, and inoculated with spores of Eutypa lata or Diplodia seriata at various times, from 1 to 112 days after pruning. For both pathogens, wounds were highly susceptible immediately after pruning, followed by a rapid decrease in susceptibility over the next 14 days in McLaren Vale and Adelaide Hills, South Australia, whereas the period of susceptibility was longer in Big Rivers, New South Wales, where high natural disease pressure of D. seriata confounded results. In the Adelaide Hills, delaying pruning to late winter may reduce the risk of infection by E. lata. A detached cane assay confirmed that the duration of susceptibility of six commonly grown cultivars to E. lata infection was similar.  相似文献   
83.
84.
Existing studies suggest that biochar application can reduce soil nitrous oxide (N2O) emissions, mainly based on short-term results. However, it remains unclear what the effects (i.e., legacy effects) and underlying mechanisms are on N2O emissions after many years of a single application of biochar. Here, we collected intact soil columns from plots without and with biochar application in a subtropical tea plantation 7 years ago for an incubation experiment. We used the N2O isotopocule analysis combined with ammonia oxidizer-specific inhibitors and molecular biology approaches to investigate how the legacy effect of biochar affected soil N2O emissions. Results showed that the soil in the presence of biochar had lower N2O emissions than the control albeit statistically insignificant. The legacy effect of biochar in decreasing N2O emissions may be attributed to the reduced effectiveness of the soil substrate, nitrification and denitrification activities, and the promotion of the further reduction of N2O. The legacy effect of biochar reduced the relative contribution of nitrifier denitrification/bacterial denitrification, nitrification-related N2O production, and the relative abundance of several microorganisms involved in the nitrogen cycle. Our global meta-analysis also showed that the reduction of N2O by biochar increased with increasing application rate but diminished and possibly even reversed with increasing experimental time. In conclusion, our findings suggest that the abatement capacity of biochar on soil N2O emissions may weaken over time after biochar application, but this remains under further investigation.  相似文献   
85.
Damage to plant communities imposed by insect herbivores generally decreases from low to high latitudes. This decrease is routinely attributed to declines in herbivore abundance and/or diversity, whereas latitudinal changes in per capita food consumption remain virtually unknown. Here, we tested the hypothesis that the lifetime food consumption by a herbivore individual decreases from low to high latitudes due to a temperature-driven decrease in metabolic expenses. From 2016 to 2019, we explored latitudinal changes in multiple characteristics of linear (gallery) mines made by larvae of the pygmy moth, Stigmella lapponica, in leaves of downy birch, Betula pubescens. The mined leaves were larger than intact leaves at the southern end of our latitudinal gradient (at 60°N) but smaller than intact leaves at its northern end (at 69°N), suggesting that female oviposition preference changes with latitude. No latitudinal changes were observed in larval size, mine length or area, and in per capita food consumption, but the larval feeding efficiency (quantified as the ratio between larval size and mine size) increased with latitude. Consequently, S. lapponica larvae consumed less foliar biomass at higher latitudes than at lower latitudes to reach the same size. Based on space-for-time substitution, we suggest that climate warming will increase metabolic expenses of insect herbivores with uncertain consequences for plant–herbivore interactions.  相似文献   
86.
Endemic species are important components of regional biodiversity and hold the key to understanding local adaptation and evolutionary processes that shape species distributions. This study investigated the biogeographic history of a relict conifer Pinus bungeana Zucc. ex Endl. confined to central China. We examined genetic diversity in P. bungeana using genotyping-by-sequencing and chloroplast and mitochondrial DNA markers. We performed spatial and temporal inference of recent genetic and demographic changes, and dissected the impacts of geography and environmental gradients on population differentiation. We then projected P. bungeana's risk of decline under future climates. We found extremely low nucleotide diversity (average π 0.0014), and strong population structure (global FST 0.234) even at regional scales, reflecting long-term isolation in small populations. The species experienced severe bottlenecks in the early Pliocene and continued to decline in the Pleistocene in the western distribution, whereas the east expanded recently. Local adaptation played a small (8%) but significant role in population diversity. Low genetic diversity in fragmented populations makes the species highly vulnerable to climate change, particularly in marginal and relict populations. We suggest that conservation efforts should focus on enhancing gene pool and population growth through assisted migration within each genetic cluster to reduce the risk of further genetic drift and extinction.  相似文献   
87.
Intensive dairy farming systems are a large source of emission of the greenhouse gas nitrous oxide (N2O), because of high nitrogen (N) application rates to grasslands and silage maize fields. The objective of this study was to compare measured N2O emissions from two different soils to default N2O emission factors, and to look at alternative emission factors based on (i) the N uptake in the crop and (ii) the N surplus of the system, i.e., N applied minus N uptake by the crop. Twelve N fertilization regimes were implemented on a sandy soil (typic endoaquoll) and a clay soil (typic endoaquept) in the Netherlands, and N2O emissions were measured throughout the growing season. Highest cumulative fluxes of 1.92 and 6.81 kg N2O-N ha–1 for the sandy soil and clay soil were measured at the highest slurry application rate of 250 kg N ha–1. Background emissions from unfertilized soils were 0.14 and 1.52 kg N2O-N ha–1 for the sandy soil and the clay soil, respectively. Emission factors for the sandy soil averaged 0.08, 0.51 and 0.26% of the N applied via fertilizer, slurry, and combinations of both. For the clay soil, these numbers were 1.18, 1.21 and 1.69%, respectively. Surplus N was linearly related to N2O emission for both the sandy soil (R2=0.60) and the clay soil (R2=0.40), indicating a possible alternative emission factor. We concluded that, in our study, N2O emission was not linearly related to N application rates, and varied with type and application rate of fertilizer. Finally, the relatively high emission from the clay soil indicates that background emissions might have to be taken into account in N2O budgets.  相似文献   
88.
It is usually thought that unlike terrestrial plants, phytoplankton will not show a significant response to an increase of atmospheric CO2. Here we suggest that this view may be biased by a neglect of the effects of carbon (C) assimilation on the pH and the dissociation of the C species. We show that under eutrophic conditions, productivity may double as a result of doubling of the atmospheric CO2 concentration. Although in practice productivity increase will usually be less, we still predict a productivity increase of up to 40% in marine species with a low affinity for bicarbonate. In eutrophic freshwater systems doubling of atmospheric CO2 may result in an increase of the productivity of more than 50%. Freshwaters with low alkalinity appeared to be very sensitive to atmospheric CO2 elevation. Our results suggest that the aquatic C sink may increase more than expected, and that nuisance phytoplankton blooms may be aggravated at elevated atmospheric CO2 concentrations.  相似文献   
89.
Changes in vegetation structure and biogeography due to climate change feedback to alter climate by changing fluxes of energy, moisture, and momentum between land and atmosphere. While the current class of land process models used with climate models parameterizes these fluxes in detail, these models prescribe surface vegetation and leaf area from data sets. In this paper, we describe an approach in which ecological concepts from a global vegetation dynamics model are added to the land component of a climate model to grow plants interactively. The vegetation dynamics model is the Lund–Potsdam–Jena (LPJ) dynamic global vegetation model. The land model is the National Center for Atmospheric Research (NCAR) Land Surface Model (LSM). Vegetation is defined in terms of plant functional types. Each plant functional type is represented by an individual plant with the average biomass, crown area, height, and stem diameter (trees only) of its population, by the number of individuals in the population, and by the fractional cover in the grid cell. Three time‐scales (minutes, days, and years) govern the processes. Energy fluxes, the hydrologic cycle, and carbon assimilation, core processes in LSM, occur at a 20 min time step. Instantaneous net assimilated carbon is accumulated annually to update vegetation once a year. This is carried out with the addition of establishment, resource competition, growth, mortality, and fire parameterizations from LPJ. The leaf area index is updated daily based on prevailing environmental conditions, but the maximum value depends on the annual vegetation dynamics. The coupling approach is successful. The model simulates global biogeography, net primary production, and dynamics of tundra, boreal forest, northern hardwood forest, tropical rainforest, and savanna ecosystems, which are consistent with observations. This suggests that the model can be used with a climate model to study biogeophysical feedbacks in the climate system related to vegetation dynamics.  相似文献   
90.
In order to examine the likely impacts of climate change on fish stocks, it is necessary to couple the output from large‐scale climate models to fisheries population simulations. Using projections of future North Sea surface temperatures for the period 2000–2050 from the Hadley General Circulation Model, we estimate the likely effects of climate change on the North Sea cod population. Output from the model suggests that increasing temperatures will lead to an increased rate of decline in the North Sea cod population compared with simulations that ignore environmental change. Although the simulation developed here is relatively simplistic, we demonstrate that inclusion of environmental factors in population models can markedly alter one's perception of how the population will behave. The development of simulations incorporating environment effects will become increasingly important as the impacts of climate change on the marine ecosystem become more pronounced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号